Méthodes numériques de double maillage pour la simulation d'écoulements polyphasiques dans les milieux poreux

par Sophie Verdière

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Jean-Marie Thomas.

Soutenue en 1997

à Pau .


  • Résumé

    Les réservoirs pétroliers sont constitués de roches fortement hétérogènes. Les modèles géologiques ainsi générés utilisent un nombre très important d'éléments ou mailles. Pour des raisons de coût de calcul, la simulation numérique des écoulements dans les réservoirs nécessite de travailler sur un nombre de mailles plus réduits. La méthode classique consiste à déterminer le maillage réservoir en mettant à l'échelle les paramètres pétrophysiques. Cette démarche a l'inconvénient de ne pas tenir compte de l'évolution au cours du temps des variables du problème. Pour pallier ce défaut, on propose d'avoir recours à une homogénéisation pendant la résolution du problème. La méthode de double maillage consiste à résoudre, pour un système couple pression-saturation, chacune des équations du système avec une discrétisation en temps et en espace spécifique. L'appliquer à un problème diphasique revient à résoudre l'équation en pression (parabolique) sur un maillage plus grossier que l'équation en saturation (hyperbolique). Par rapport a un schéma Impes classique, il faut : 1) assurer le passage des résultats de la résolution implicite de l'équation en pression pour faire évoluer la saturation sur le maillage fin ; 2) une fois la saturation mise à jour, éventuellement après plusieurs pas de temps locaux, on calcule les paramètres homogénéisés nécessaires pour la prochaine étape du calcul en pression en tenant compte de la distribution au cours du temps des saturations. Le travail de ces trois ans a permis in fine de montrer la validité de la méthode de double maillage non seulement de manière numérique mais aussi théorique. En effet, la méthode a été validée numériquement sur des écoulements diphasiques incompressibles en milieux hétérogènes que les rapports de mobilités soient favorables ou non. De plus, une démonstration de convergence a assuré la validité théorique de la méthode pour un cas simplifié homogène (système elliptique/hyperbolique).


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol (158 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p.152-158

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Pau et des Pays de l'Adour. Service Commun de la Documentation. Section Lettres.
  • Disponible pour le PEB
  • Cote : USG 11403
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.