Méthodes d'approximation et de géométrie algorithmique pour la reconstruction de courbes et surfaces

par Jean-Christophe Roux

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Bernard Lacolle.

Soutenue en 1994

à Grenoble 1 , en partenariat avec Institut d'informatique et mathématiques appliquées (Grenoble) (autre partenaire) .


  • Résumé

    Nous abordons dans cette étude le problème de la reconstruction de courbes et de surfaces, à partir de points leur appartenant et sous l'hypothèse que la seule connaissance que nous avons sur ces points est celle de leurs coordonnées. Dans le cas des courbes, nous proposons une méthode basée sur l'approximation locale de la courbe par des cercles et sur le traitement global de sous-ensembles de points. Une méthode d'approximation robuste au moyen d'un problème de minimisation permet donc d'approcher localement la courbe par un cercle, et d'ordonner les sous-ensembles de points ainsi approchés. Des méthodes algorithmiques de découpe et de raccord permettent alors de mener à bien la reconstruction d'une courbe. L'existence de points multiples ou de points de rebroussement est prise en compte par une stratégie d'énumération des différentes morphologies locales de la courbe. La méthode s'avère aussi robuste lorsque les points initiaux sont perturbés. Les complexités temporelle et en place mémoire optimales des algorithmes et de la structure de données, ainsi que l'ordonnancement global permettent de traiter des ensembles initiaux comportant un grand nombre de points. Des cas de surfaces radiales ou de surfaces correspondant au graphe d'une fonction ont été traités en approchant le nuage de points par une sphère. Les points sont projetés et triangulés selon la triangulation de Delaunay sur la sphère, et nous obtenons alors une surface polyèdrique liant les points. Des tests et des comparaisons avec des méthodes du type triangulations dépendantes des données sont établis sur ces catégories de surfaces

  • Titre traduit

    Approximation and computational geometry methods for curves and surfaces reconstruction


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (iii-195 p.)
  • Annexes : Bibliogr. p. 191-195

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Grenoble Alpes (Saint-Martin d'Hères, Isère). Bibliothèque et Appui à la Science Ouverte. Bibliothèque universitaire Joseph-Fourier.
  • Disponible pour le PEB
  • Cote : TS 94/GRE1/0033
  • Bibliothèque : Moyens Informatiques et Multimédia. Information.
  • Disponible pour le PEB
  • Cote : IMAG-1994-ROU
  • Bibliothèque : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque Mathématiques-Informatique Recherche.
  • Disponible pour le PEB
  • Cote : THESE 05173

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 1994GRE10033
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.