Espaces de Sobolev généralisés de type orlicz ou à poids : densité, immersion continue, interpolation de Lagrange

par Renée Vaudène

Thèse de doctorat en Mathématiques

Sous la direction de Alain Fougères.

Soutenue en 1985

à Perpignan .


  • Résumé

    Le but est d'etendre a des espaces de sobolev modeles sur des espaces integraux de type orlicz (parmi lesquels figurent les espaces de sobolev-orlicz avec ou sans poids) certaines proprietes des espaces de sobolev classiques. On obtient des resultats de densite des fonctions c**(infini) bornees en adaptant la technique classique de regularisation ce qui necessite une etude complete de la stabilite geometrique dans les espaces integraux, etude pour laquelle la "condition de croissance" s'avere etre l'outil fondamental. En raisonnant par densite, d'une part, on generalise l'egalite de sobolev et les proprietes d'immersion dans les espaces de fonctions de classe c**(l), d'autre part, on etablit, a partir de l'etude du reste de taylor sous forme integrale, une estimation de l'erreur d'interpolation de lagrange valable sur l'espace entier meme dans les cas non reflexifs.

  • Titre traduit

    Generalized Sobolev spaces of orlicz type or with weight : density, continuous immersion, lagrange interpolation


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (pagination multiple)

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Perpignan Via Domitia. Service commun de la documentation. Section Sciences.
  • Disponible pour le PEB
  • Cote : TH 1985 PHI
  • Bibliothèque : Université de Poitiers. Département de mathématiques. Bibliothèque.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.